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Summary. The detailed theoretical understanding of quantum spin dynamics in various molecular

magnets is an important step on the roadway to technological applications of these systems. Quantum

effects in both ferromagnetic and antiferromagnetic molecular clusters are, by now, theoretically well

understood. Ferromagnetic molecular clusters allow one to study the interplay of incoherent quantum

tunneling and thermally activated transitions between states with different spin orientation. The Berry

phase oscillations found in Fe8 are signatures of the quantum mechanical interference of different

tunneling paths. Antiferromagnetic molecular clusters are promising candidates for the observation of

coherent quantum tunneling on the mesoscopic scale. Although challenging, application of molecular

magnetic clusters for data storage and quantum data processing are within experimental reach already

with present day technology.
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Introduction

Molecular magnets have attracted considerable interest recently because of their
potential for data storage and data processing [1]. In addition to possible future
technological applications, molecular magnets are also interesting from an aca-
demic point of view because they show quantum effects on the mesoscopic scale
[2] in the form of tunneling of magnetization. In the following, we review some of
our theoretical work on quantum spin dynamics in molecular magnets.

Ferromagnetic molecular magnets such as Mn12 and Fe8 show incoherent tun-
neling of the magnetization [3–6] and allow one to study the interplay of thermally
activated processes and quantum tunneling. The spin tunneling leads to two effects.
Firstly, the magnetization relaxation is accelerated whenever spin states of oppo-
site direction become degenerate due to the variation of the external longitudinal
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magnetic field [7–11]. Secondly, the spin acquires a Berry phase during the tunnel-
ing process, which leads to oscillations of the tunnel splitting as a function of the
external transverse magnetic field [12–15].

Due to the strong quantum spin dynamics induced by antiferromagnetic ex-
change interaction [16–19], antiferromagnetic molecular magnets such as ferric
wheels belong to the most promising candidates for the observation of coherent
quantum tunneling on the mesoscopic scale [20–23]. In contrast to incoherent
tunneling, in quantum coherent tunneling spins tunnel back and forth between
energetically degenerate configurations at a tunneling rate which is large compared
to the decoherence rate. The detection of coherent quantum tunneling is more
challenging in antiferromagnetic molecular magnets than in ferromagnetic sys-
tems, but is feasible with present day experimental techniques.

Understanding the properties of molecular magnets is only a first step on the
roadway to technological applications. A possible next step will be the preparation
and control of a well defined single-spin quantum state of a molecular cluster.
Although challenging, this task appears feasible with present day experiments
and would allow one to carry out quantum computing with molecular magnets
[1]. The idea is to use the Grover quantum search algorithm [24] to read-in and
decode information stored in the phases of a single-spin state.

Spin Tunneling in Mn12-Acetate

The magnetization relaxation of crystals and powders made of molecular magnets
Mn12 has attracted much recent interest since several experiments [25–29] have
indicated unusually long relaxation times as well as increased rates [7, 8, 30]
whenever two spin states become degenerate in response to a varying longitudinal
magnetic field Hz. According to earlier suggestions [31, 27] this phenomenon has
been interpreted as a manifestation of incoherent macroscopic quantum tunneling
(MQT) of the spin.

As long as the external magnetic field Hz is much smaller than the internal
exchange interactions between the Mn ions of the Mn12 cluster, the Mn12 cluster
behaves like a large single spin S of length s¼ 10. For temperatures T0 1 K its spin
dynamics can be described by a spin Hamiltonian of form H ¼ Ha þHZ þHsp þ
HT including the coupling between this large spin and the phonons in the crystal
[9–11, 32–37]. In particular,

Ha ¼ �AS2
z � BS4

z ð1Þ

represents the magnetic anisotropy where A�B>0. The Zeeman term through
which the external magnetic field Hz couples to the spin S is given by HZ ¼
g�BHzSz, while the tunneling between Sz-states is governed by

HT ¼ �
1

2
B4ðS4

þ þ S4
�Þ þ g�BHxSx; ð2Þ

where Hx ¼ jHj sin � ð
 HzÞ is the transverse field, with � being the misalignment
angle. The values of the anisotropy constants A, B, B4 have been determined by
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ESR experiments [38, 39]. Finally, the most general spin-phonon coupling reads

Hsp ¼ g1ð�xx � �yyÞ � ðS2
x � S2

yÞ þ
1

2
g2�xy � fSx; Syg

þ 1

2
g3ð�xz � fSx; Szg þ �yz � fSy; SzgÞ

þ 1

2
g4ð!xz � fSx; Szg þ !yz � fSy; SzgÞ; ð3Þ

where gi are the spin-phonon coupling constants, and ���ð!��Þ is the (anti-)sym-
metric part of the strain tensor. From the comparison between experimental data
[7, 8] and calculation it turns out that the constants gi � A 8i [9–11].

We denote by jmi, �s�m� s, the eigenstate of the unperturbed Hamiltonian
Ha þHZ with eigenvalue "m ¼ �Am2 � Bm4 þ g�BHzm. If the external magnetic
field Hz is increased one gets doubly degenerate spin states whenever a level m
coincides with a level m0 on the opposite side of the potential barrier. The reso-
nance condition for double degeneracy, i.e. "m ¼ "m0 , leads to the resonance field

Hmm0

z ¼ n

g�B

½Aþ Bðm2 þ m02Þ�: ð4Þ

As usual, we refer to n ¼ mþ m0 ¼ even (odd) as even (odd) resonances.
The relaxation of the magnetization is described in terms of a generalized

master equation for the reduced density matrix �ðtÞ which includes off-diagonal
terms due to resonances [9, 10]. We use the notation �mm0 ¼ hmj�jm0i, �m ¼
hmj�jmi. In the stationary limit _��mm0 � 0 a complete master equation

_��m ¼ �Wm�m þ
X

n 6¼m;m0

Wmn�n þ �m0

m ð�m0 � �mÞ ð5Þ

can be derived, where

�m0

m ¼ E2
mm0

Wm þWm0

4�2
mm0 þ �h2ðWm þWm0 Þ2

ð6Þ

is the incoherent tunneling rate from m to m0 in the presence of phonon-damping
[10]. The spin-phonon rates Wm � 1;m and Wm � 2;m are evaluated by means of
Fermi’s golden rule [10].

In Refs. [9, 10] the master equation is solved exactly to find the largest relaxa-
tion time. The result is plotted in Fig. 1. The even resonances are induced by the
quartic B4-anisotropy, whereas the odd resonances are induced by product-combi-
nations of B4S4

� - and HxSx-terms. In Fig. 2 the peaks of the resonance at Hz¼ 0
(induced only by the B4-term) are displayed for four different temperatures. All the
peaks are of single Lorentzian shape as a result of the 2-state transition rate �m0

m

given in (6), which agrees well with the measurements [7].
It is instructive to determine the dominant transition paths via which the spin

can relax. For this an approximate analytic expression for the relaxation time can
be derived by means of conservation laws that resemble Kirchhoff ’s rules for
electrical circuits [9, 10].
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Incoherent Zener Tunneling in Fe8

Besides Mn12 there have been several experiments on the molecular magnet Fe8

that revealed macroscopic quantum tunneling of the spin [40–42, 12, 13]. In
particular, recent measurements on Fe8 [12, 13] lead to the development of the
concept of the incoherent Zener tunneling [14]. The resulting Zener tunneling
probability Pinc exhibits Berry phase oscillations as a function of the external
transverse field Hx.

For many physical systems the Landau–Zener model [43] has become an
important tool for studying tunneling transitions [44–47]. It must be noted that
all quantum systems to which the Zener model [43] is applicable can be described
by pure states and their coherent time evolution. Reference [14] generalizes the
Zener theory in the sense that also the incoherent evolution of mixed states is taken
into account (see also Refs. [44] and [48–52] for a comparison). In particular, the
theory presented in Ref. [14] agrees well with recent measurements of Pinc(Hx) for
various temperatures in Fe8 [12, 13].

Fig. 1. Full line: semilogarithmic plot of calculated relaxation time  as function of magnetic field

Hz at T¼ 1.9 K. Dots and error bars: data taken from Ref. [8]

Fig. 2. Full lines: semilogarithmic plots of calculated relaxation rate �¼ 1= as function of Hz for

the first resonance peak at (a) T¼ 2.5 K, (b) T¼ 2.6 K, (c) T¼ 2.7 K, and (d) T¼ 2.8 K. All peaks are

of single Lorentzian shape. Dots: data taken from Ref. [7]
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For the Zener transition usually only the asymptotic limit is of interest. There-
fore it is required that the range over which "mm0 ðtÞ ¼ "m � "m0 is swept is much
larger than the tunnel splitting Emm0 and the decoherence rate �h�mm0 (see below and
Fig. 3). In addition, the evolution of the spin system is restricted to times t that are
much longer than the decoherence time d ¼ 1=�mm0 . In this case, tunneling transi-
tions between pairs of degenerate excited states are incoherent. This tunneling is
only observable if the temperature T is kept well below the activation energy of the
potential barrier. Accordingly, one is interested only in times t that are larger than
the relaxation times of the excited states. Thus, the formalism presented in Refs.
[9, 10] can be applied. It was shown in Ref. [14] that the Zener tunneling can be
described by Eq. (5), where

�m0

m ðtÞ ¼
E2

mm0

2

�mm0

"2
mm0 ðtÞ þ �h2�2

mm0
ð7Þ

is time-dependent, in contrast to Eq. (6). As usual, the abbreviations �mm0 ¼ ðWm þ
Wm0 Þ=2 and Wm ¼

P
n Wnm are used, where Wnm denotes the approximately time-

independent transition rate from jmi to jni, which can be obtained via Fermi’s
golden rule [9, 10]. The tunnel splitting [9, 10] is given by

Emm0 ¼ 2
X

m1 ;...;mN
mi 6¼m;m0

Vm;m1

"m � "m1

YN�1

i¼1

Vmi;miþ1

"m � "miþ1

VmN ;m0

�������
�������: ð8Þ

Vmi;mj
denote off-diagonal matrix elements of the total Hamiltonian Htot.

Since all resonances n lead to similar results, Eq. (5) is solved only in the
unbiased case – corresponding to n¼ 0 (see below) – where the ground states
jsi, j � si and the excited states jmi, j � mi, m2½½s� � sþ 1; s� 1� of the spin
system with spin s are pairwise degenerate. In addition, it is assumed that the
excited states are already in their stationary state, i.e., _��m ¼ 0 8m 6¼ s;�s. Eq.
(5) leads then to

1� Pinc � ��ðtÞ ¼ exp

�
�
ðt

t0

dt0�totðt0Þ
�
; ð9Þ

where ��ðtÞ ¼ �s � ��s, which satisfies the initial condition ��ðt ¼ t0Þ ¼ 1, and
thus Pincðt ¼ t0Þ ¼ 0. The total time-dependent relaxation rate is given by �tot ¼
2½��s

s þ �th�, where the thermal rate �th, which determines the incoherent relaxa-
tion via the excited states, is evaluated by means of relaxation diagrams [9, 10].

Fig. 3. Energy level crossing diagram for incoherent Zener transitions. Dotted lines: transitions due

to interaction with environment, leading to a linewidth �mm0
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Assuming linear time dependence, i.e., "mm0 ðtÞ ¼ �m0
m t, in the transition region

[43], and with
��"h;imm0

��� �h�mm0 one obtains from Eq. (9)

�� ¼ exp

�
�

2E2
s;�s

�h��s
s

arctan

�
��s

s

�h�s;�s

t

	
�
ðt

�t

dt0�th

�

� exp

�
�
�E2

s;�s

�h��s
s

�
ðt

�t

dt0�th

�
; ð10Þ

where t0 ¼ �t. In the low-temperature limit T ! 0 the excited states are not
populated anymore and thus �th, which consists of intermediate rates that are
weighted by Boltzmann factors bm [9, 10], vanishes. Consequently, Eq. (10) sim-
plifies to

�� ¼ exp

�
�
�E2

s;�s

�h��s
s

�
¼ exp

�
�

�E2
s;�s

�hj _""s;�sð0Þj

�
: ð11Þ

The exponent in Eq. (11) differs by a factor of 2 from the Zener exponent [43].
This is not surprising since �tot is the relaxation rate of ��, where both �s and ��s

are changed in time by the same amount, and not an escape rate like in the case of
coherent Zener transition, where only the population of the initial state is changed
in time. Equation (11) implies Pinc ¼ 1 for j _""s;�sð0Þj ! 0 (adiabatic limit) and
Pinc ¼ 0 for j _""s;�sð0Þj ! 1 (sudden limit).

In accordance with earlier work [12, 13, 40–42, 53] Ref. [14] uses a single-spin
Hamiltonian H ¼ Ha þHT þHZ þHsp that describes sufficiently well the behav-
ior of the large spin S with s¼ 10 of a Fe8 cluster. After fitting the parameters the
incoherent Zener theory is in excellent agreement with experiments [12, 13] for the
temperature range 0:05 K� T � 0:7 K if the states j � 10i, j � 9i, and j � 8i are
taken into account. In particular, the path leading through j � 8i gives a non-neg-
ligible contribution for T0 0.6 K. Solving the relaxation diagram shown in Fig. 4
one obtains from Eq. (10) for Fe8 in the case n¼ 0

�tot ¼ 2 ��10
10 þ

X8

n¼9

bn

2
W10;n

þ 1
��n

n

 !
;

�� ¼ exp �
�E2

10;�10

�h��10
10

�
X8

n¼9

�E2
n;�nW10;nbn

��n
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

n;�n þ �h2W2
10;n

q
8><
>:

9>=
>;; ð12Þ

where the approximation �n;�n � W10;n and
��"h;imm0

��� En;�n; �n;�n is used. Pinc ¼
1���, which is plotted in Fig. 5, is in good agreement with the measurements
[13].

Fig. 4. Unbiased (n¼ 0) relaxation diagram for Fe8. Full (dashed) lines: thermal (tunneling)

transitions
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Coherent Néel Vector Tunneling in Antiferromagnetic
Molecular Wheels

Antiferromagnetic molecular clusters belong to the most promising candidates for
the observation of coherent quantum tunneling on the mesoscopic scale currently
available [20]. Several systems in which an even number N of antiferromagneti-
cally coupled ions is arranged on a ring have been synthesized to date [54–57].
These systems are well described by the spin Hamiltonian

ĤH ¼ J
XN

i¼1

ŝsi � ŝsiþ1 þ g�BB �
XN

i¼1

ŝsi � kz

XN

i¼1

ŝs2
i;z; ð13Þ

where ŝsi is the spin operator at site i with spin quantum number s, ŝsNþ1 � ŝs1, J is
the nearest-neighbor exchange, B the magnetic field, and kz>0 the single-ion
anisotropy directed along the ring axis. The parameters J and kz have been well
established both for various ferric wheels [54–56, 58–62] with N ¼ 6; 8; 10, and,
more recently, also for a Cr wheel [57]. For B¼ 0, the classical ground-state spin
configuration of the wheel shows alternating (N�eeel) order with the spins pointing
along � ez. The two states with the N�eeel vector n along � ez (Fig. 6), labeled j "i
and j #i, are energetically degenerate and separated by an energy barrier of height
Nkzs

2. Because antiferromagnetic exchange induces dynamics of N�eeel ordered
spins, the states j "i and j #i are not energy eigenstates. Rather, a molecule pre-
pared in spin state j "i would tunnel coherently between j "i and j #i at a rate �=h,
where � is the tunnel splitting [16, 17]. This tunneling of the N�eeel vector corre-
sponds to a simultaneous tunneling of all N spins within the wheel through a
potential barrier governed by the easy-axis anisotropy. Within the framework of
coherent state spin path integrals, an explicit expression for the tunnel splitting �
as a function of the magnetic field B has been derived [20]. A magnetic field
applied in the ring plane, Bx, gives rise to a Berry phase acquired by the spins
during tunneling [15, 63]. The resulting interference of different tunneling paths
leads to a sinusoidal dependence of � on Bx, which allows one to continuously
tune the tunnel splitting from 0 to a maximum value which is of order of some
Kelvin for the antiferromagnetic wheels synthesized to date.

Fig. 5. Zener transition probability Pinc(Hx) for temperatures T¼ 0.7 K, 0.65 K, 0.6 K, 0.55 K,

0.5 K, 0.45 K, and 0.05 K. The fit agrees well with data (Ref. [13]). Note that Pinc is equal to 2P

in Ref. [13]
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The tunnel splitting � also enters the energy spectrum of the antiferromagnetic
wheel as level spacing between the ground and first excited state. Thus, � can be
experimentally determined from various quantities such as magnetization, static
susceptibility, and specific heat. Even more information on the physical properties
of antiferromagnetic wheels [Eq. (13)] can be obtained from a theoretical and
experimental investigation of dynamical quantities, such as the correlation functions
of the total spin ŜS ¼

PN
i¼1 ŝsi or of single spins within the wheel [21–23]. By sym-

metry arguments, it follows that the correlation function of total spin, hŜS�ðtÞŜS�ð0Þi,
which is experimentally accessible via measurement of the alternating current (AC)
susceptibility does not contain a component which oscillates with the tunnel fre-
quency �=h [21–23]. Hence, neither the tunnel splitting nor the decoherence rate of
N�eeel vector tunneling can be obtained by experimental techniques which couple to
the total spin of the wheel. In contrast, the correlation function of a single spin

ĥssi;zðtÞŝsi;zð0Þi ’ s2

�
e���=2

2 coshð��=2Þ ei�t=�h þ e��=2

2 coshð��=2Þ e�i�t=�h

	
ð14Þ

exhibits the time dependence characteristic of coherent tunneling of the quantity
ŝsi;z with a tunneling rate �=h [21]. We conclude that local spin probes are required
for the observation of the N�eeel vector dynamics. Nuclear spins which couple (pre-
dominantly) to a given single spin ŝsi are ideal candidates for such probes [21] and
have already been used to study spin cross-relaxation between electron and nuclear
spins in ferric wheels [64, 65].

For simplicity, we consider a single nuclear spin ÎI, I¼ 1=2, coupled to one
electron spin by a hyperfine contact interaction ĤH

0 ¼ Aŝs1 � ÎI. According to Eq. (14),
the tunneling electron spin ŝs1 produces a rapidly oscillating hyperfine field
As cosð�t=�hÞ at the site of the nucleus. Signatures of the coherent electron spin
tunneling can thus also be found in the nuclear susceptibility. For a static magnetic
field applied in the plane of the ring, Bx, it can be shown that the nuclear susceptibility

�00I;yyð!Þ ’
�

4

�
tanh

�
��IBx

2

	
�ð!� �IBx=�hÞ

þ
�

As

�

	2

tanh

�
��

2

	
�ð!��=�hÞ

�
� ½!! �!� ð15Þ

Fig. 6. The two degenerate classical ground state spin configurations of an antiferromagnetic mo-

lecular wheel with easy axis anisotropy

M. N. Leuenberger et al.



exhibits a satellite resonance at the tunnel splitting � of the electron spin system
[21]. Here, �IBx is the Larmor frequency of the nuclear spin and the first term in
Eq. (15) corresponds to the transition between the Zeeman-split energy levels of I.
Because typically As ’ 1 mK and �92 K in Fe10, the spectral weight of the
satellite peak is small compared to the one of the first term in Eq. (15) unless
the magnetic field is tuned such that � is significantly reduced compared to its
maximum value. The observation of the satellite peak in �00I;yyð!Þ is challenging,
but possible with current experimental techniques [21]. The experiment must be
conducted with single crystals of an antiferromagnetic molecular wheel with suffi-
ciently large anisotropy kz>2J=(Ns)2 at high, tunable fields (10 T) and low tem-
peratures (2 K). Moreover, because the tunnel splitting �(B) depends sensitively
on the relative orientation of B and the easy axis [59, 60], careful field sweeps are
necessary to ensure that the satellite peak in Eq. (15) has a large spectral weight.

The need for local spin probes such as NMR or inelastic neutron scattering to
detect coherent N�eeel vector tunneling can be traced back to the translation sym-
metry of the spin Hamiltonian ĤH [22, 23]. If this symmetry is broken, e.g. by
doping of the wheel, ESR also provides an adequate technique for the detection
of coherent N�eeel vector tunneling. If one of the original Fe or Cr ions of the wheel
with spin s¼ 5=2 or s¼ 3=2, respectively, is replaced by an ion with different spin
s0 6¼ s, this will in general also result in a different exchange constant J0 and single
ion anisotropy k0z at the dopand site, i.e.,

ĤH¼ J
XN�1

i¼2

ŝsi � ŝsiþ1þJ0ðŝs1 � ŝs2þ ŝs1 � ŝsNÞþg�BB �
XN

i¼1

ŝsi�
�

k0zŝs
2
1;zþkz

XN

i¼2

ŝs2
i;z

	
: ð16Þ

Although thermodynamic quantities, such as magnetization, of the doped wheel
may differ significantly from the ones of the undoped wheel, the picture of spin
tunneling in antiferromagnetic molecular systems [16, 17] remains valid [22].
However, due to unequal sublattice spins, a net total spin remains even in the
N�eeel ordered state of the doped wheel (Fig. 7) which allows one to distinguish
the configurations sketched in Fig. 6 according to their total spin. The dynamics
of the total spin ŜS is coupled to the one of the N�eeel vector, and coherent tunneling
of the N�eeel vector results in a coherent oscillation of the total spin such that the

Fig. 7. The doped antiferromagnetic molecular wheel acquires a tracer spin which follows the N�eeel

vector dynamics (left panel). Comparison of results obtained for the matrix element jhejŜSzjgij with a

coherent state spin path integral formalism (solid line) and by numerical exact diagonalization

(symbols) for N¼ 4, s¼ 5=2, s0 ¼ 2, J0 ¼ J, kz ¼ k0z ¼ 0:055 J (right panel)
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tunneling dynamics can also be probed by ESR. The AC susceptibility shows a
resonance peak at the tunnel splitting �,

�00zzð! ’ �=�hÞ ¼ �ðg�BÞ2jhejŜSzjgij2tanh

�
��

2

	
�ð!��=�hÞ: ð17Þ

with a transition matrix element between the ground state jgi and first excited
state jei,

jhejŜSzjgij ’ js0 � sj 8Jkzs
2

ðg�BBxÞ2
ð18Þ

for g�BBx � s
ffiffiffiffiffiffiffiffiffi
8Jkz

p
. The matrix element in Eq. (18) determines the spectral weight

of the absorption peak in the ESR spectrum. The analytical dependence has been
determined within a semiclassical framework and is in good agreement with
numerical results obtained from exact diagonalization of small systems (Fig. 7).

In conclusion, several antiferromagnetic molecular wheels synthesized recently
are promising candidates for the observation of coherent N�eeel vector tunneling.
Although the observation of this phenomenon is experimentally challenging,
nuclear magnetic resonance, inelastic neutron scattering, and ESR on doped wheels
are adequate experimental techniques. The theory of coherent spin quantum tun-
neling as presented above applies to zero-dimensional systems, such as small ferric
wheels. With increasing wheel size, the possibility of different magnetic domains
arises and new exciting quantum effects in the dynamics of domain walls come into
play [66–72]. Molecular wheels will also allow one to study the transition from
zero- to one-dimensional quantum behavior with increasing system size.

Quantum Computing with Molecular Magnets

Shor and Grover demonstrated that a quantum computer can outperform any clas-
sical computer in factoring numbers [73] and in searching a database [24] by ex-
ploiting the parallelism of quantum mechanics. Recently, the latter has been
successfully implemented [74] using Rydberg atoms. In Ref. [1] an implementation
of Grover’s algorithm was proposed that uses molecular magnets [7, 8, 13, 41, 75].
It was shown theoretically that molecular magnets can be used to build dense and
efficient memory devices based on the Grover algorithm. In particular, one single
crystal can serve as a storage unit of a dynamic random access memory device.
Fast electron spin resonance pulses can be used to decode and read out stored
numbers of up to 105, with access times as short as 10� 10 seconds. This proposal
should be feasible using the molecular magnets Fe8 and Mn12.

Suppose we want to find a phone number in a phone book consisting of N¼ 2n

entries. Usually it takes N=2 queries on average to be successful. Even if the N
entries were encoded binary, a classical computer would need approximately
log2 N queries to find the desired phone number [24]. But the computational paral-
lelism provided by the superposition and interference of quantum states enables the
Grover algorithm to reduce the search to one single query [24]. This query can be
implemented in terms of a unitary transformation applied to the single spin of a
molecular magnet. Such molecular magnets, forming identical and largely inde-
pendent units, are embedded in a single crystal so that the ensemble nature of such
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a crystal provides a natural amplification of the magnetic moment of a single spin.
However, for the Grover algorithm to succeed, it is necessary to find ways to
generate arbitrary superpositions of spin eigenstates. For spins larger than 1=2 this
turns out to be a highly non-trivial task as spin excitations induced by magnetic
dipole transitions in conventional electron spin resonance (ESR) can change the
magnetic quantum number m by only � 1. To circumvent such physical limitations
it was proposed to use multifrequency coherent magnetic radiation that allows the
controlled generation of arbitrary spin superpositions. In particular, it was shown
that by means of advanced ESR techniques it is possible to coherently populate and
manipulate many spin states simultaneously by applying one single pulse of a
magnetic a.c. field containing an appropriate number of matched frequencies. This
a.c. field creates a nonlinear response of the magnet via multiphoton absorption
processes involving particular sequences of � and � photons which allows the
encoding and, similarly, the decoding of states. Finally, the subsequent read-out
of the decoded quantum state can be achieved by means of pulsed ESR techniques.
These exploit the non-equidistance of energy levels which is typical of molecular
magnets.

Molecular magnets have the important advantage that they can be grown natu-
rally as single crystals of up to 10–100 mm length containing about 1012 to 1015

(largely) independent units so that only minimal sample preparation is required.
The molecular magnets are described by a single-spin Hamiltonian of the form
Hspin ¼ Ha þ V þHsp þHT [9, 10, 14], where Ha ¼ �AS2

z � BS4
z represents the

magnetic anisotropy (A � B>0). The Zeeman term V¼ g�BH � S describes
the coupling between the external magnetic field H and the spin S of length s.
The calculational states are given by the 2sþ 1 eigenstates of Ha þ g�BHzSz with
eigenenergies "m ¼ �Am2 � Bm4 þ g�BHzm,� s�m� s. The corresponding clas-
sical anisotropy potential energy Eð�Þ ¼ �As2 cos2�� Bs4 cos4�þ g�BHzs cos �, is
obtained by the substitution Sz ¼ s cos �, where � is the polar spherical angle. We
have introduced the notation m;m0 ¼ m� m0. By applying a bias field Hz such that
g�BHz>Emm0 , tunneling can be completely suppressed and thus HT can be
neglected [9, 10, 14]. For temperatures of below 1 K transitions due to spin-phonon
interactions (Hsp) can also be neglected. In this regime, the level lifetime in Fe8

and Mn12 is estimated to be about d ¼ 10�7s, limited mainly by hyperfine and=or
dipolar interactions [1].

Since the Grover algorithm requires that all the transition probabilities are
almost the same, Ref. [1] proposes that all the transition amplitudes between the
states jsi and jmi, m ¼ 1; 2; . . . ; s� 1, are of the same order in perturbation V. This
allows us to use perturbation theory. A different approach uses the magnetic field
amplitudes to adjust the appropriate transition amplitudes [76]. Both methods work
only if the energy levels are not equidistant, which is typically the case in molec-
ular magnets owing to anisotropies. In general, if we choose to work with the states
m ¼ m0; m0 þ 1; . . . ; s� 1, where m0 ¼ 1; 2; . . . ; s� 1, we have to go up to nth
order in perturbation, where n ¼ s� m0 is the number of computational states used
for the Grover search algorithm (see below), to obtain the first non-vanishing
contribution. Figure 9 shows the transitions for s¼ 10 and m0¼ 5. The nth-order
transitions correspond to the nonlinear response of the spin system to strong mag-
netic fields. Thus, a coherent magnetic pulse of duration T is needed with a discrete
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frequency spectrum f!mg, say, for Mn12 between 20 and 300 GHz and a single low-
frequency 0 around 100 MHz. The low-frequency field HzðtÞ ¼ H0ðtÞcosð!0tÞez,
applied along the easy-axis, couples to the spin of the molecular magnet through
the Hamiltonian

Vlow ¼ g�BH0ðtÞcosð!0tÞSz; ð19Þ

where �h!0 
 "m0
� "m0þ1 and ez is the unit vector pointing along the z axis. The �

photons of Vlow supply the necessary energy for the resonance condition (see below).
They give rise to virtual transitions with �m ¼ 0, that is, they do not transfer any
angular momentum, see Fig. 9. The perturbation Hamiltonian for the high-frequency
transitions from jsi to virtual states that are just below jmi, m ¼ m0; . . . ; s� 1,
given by the transverse fields H�

?ðtÞ ¼
Ps�1

m¼m0
HmðtÞ½cosð!mt þ 	mÞex�

sinð!mt þ 	mÞey�, reads

VhighðtÞ ¼
Xs�1

m¼m0

g�BHmðtÞ½cosð!mt þ 	mÞSx � sinð!mt þ 	mÞSy�

¼
Xs�1

m¼m0

g�BHmðtÞ
2

½eið!mtþ	mÞSþ þ e�ið!mtþ	mÞS��; ð20Þ

with phases 	m (see below), where we have introduced the unit vectors ex and ey

pointing along the x and y axis, respectively. These transverse fields rotate clock-
wise and thus produce left circularly polarized �� photons which induce only
transitions in the left well (see Fig. 8). In general, absorption (emission) of ��

photons gives rise to �m ¼ �1 ð�m ¼ þ1Þ transitions, and vice versa in the case
of �þ photons. Anti-clockwise rotating magnetic fields of the Hþ?ðtÞ ¼Ps�1

m¼m0
HmðtÞ½cosð!mt þ 	mÞex þ sinð!mt þ 	mÞey� can be used to induce spin

transitions only in the right well (Fig. 8). In this way, both wells can be accessed
independently.

Fig. 8. Double well potential seen by the spin due to magnetic anisotropies in Mn12. Arrows depict

transitions between spin eigenstates driven by the external magnetic field H
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Next we calculate the quantum amplitudes for the transitions induced by the
magnetic a.c. fields (see Fig. 9) by evaluating the S-matrix perturbatively. The
jth-order term of the perturbation series of the S-matrix in powers of the total
perturbation Hamiltonian V(t)¼Vlow(t)þVhigh(t) is expressed by

SðjÞm;s ¼
�

1

i�h

	jYj�1

k¼1

ð1
�1

dtk

ð1
�1

dtj
ðtk � tkþ1Þ

"Uð1; t1ÞVðt1ÞUðt1; t2ÞVðt2Þ � � �VðtjÞUðtj;�1Þ; ð21Þ

which corresponds to the sum over all Feynman diagrams F of order j, and where
Uðt; t0Þ ¼ e�iðHaþg�B�HzÞðt�t0Þ=�h is the free propagator, 
(t) is the Heavyside function.
The total S-matrix is then given by S ¼

P1
j¼0 SðjÞ. The high-frequency virtual transi-

tion changing m from s to s� 1 is induced by the frequency !s� 1¼!s� 1,s�
(n� 1)!0. The other high frequencies !m, m¼m0, . . . , s� 2, of the high-frequency
fields Hm mismatch the level separations by !0, that is, �h!m¼ "m� "mþ 1þ �h!0

(Fig. 9). As the levels are not equidistant, it is possible to choose the low and high
frequencies in such a way that S

ðjÞ
m;s ¼ 0 for j<n, in which case the resonance

condition is not satisfied, that is, energy is not conserved. In addition, the higher-
order amplitudes jSðjÞm;sj are negligible compared to jSðjÞm;sj for j>n. Using rectangular
pulse shapes, Hk(t)¼Hk, if � T=2< t<T=2, and 0 otherwise, for k¼ 0 and

Fig. 9. Feynman diagrams F that contribute to Sð5Þm;s for s¼ 10 and m0¼ 5 describing transitions (of

5th order in V) in the left well of the spin system (see Fig. 8). The solid and dotted arrows indicate

�� and � transitions governed by Eq. (20) and Eq. (19), respectively. We note that SðjÞm;s ¼ 0 for j<n,

and SðjÞm;s 
 SðnÞm;s for j>n
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k5m0, one obtains (m5m0)

SðnÞm;s ¼
X
F

�m

2�

i

�
g�B

2�h

	nQs�1
k¼m Hke�i	k Hm�m0

0 pm;sðFÞ
ð�1ÞqF qF !rsðFÞ!!n�1

0

" �ðTÞ
�
!m;s �

Xs�1

k¼m

!k � ðm� m0Þ!0

	
; ð22Þ

where �m¼ (m�m0)! is the symmetry factor of the Feynman diagrams F (see
Fig. 9), qF ¼ m� m0 � rsðFÞ, pm;sðFÞ ¼

Qs
k¼mhkjSzjkirkðFÞ, rkðFÞ¼ 0;1;2; . . . ; �

m�m0 is the number of � transitions directly above or below the state jki,
depending on the particular Feynman diagram F , and �ðTÞð!Þ¼ 1

2�

ÐþT=2

�T=2
ei!tdt¼

sinð!T=2Þ=�! is the delta-function of width 1=T, ensuring overall energy conser-
vation for !T�1. The duration T of the magnetic pulses must be shorter than the
lifetimes d of the states jmi (see Fig. 8).

In general the magnetic field amplitudes Hk must be chosen in such a way that
perturbation theory is still valid and the transition probabilities are almost equal,
which is required by the Grover algorithm. In Ref. [1] the amplitudes Hk do not
differ too much from each other due to the partial destructive interference of the
different transition diagrams shown in Fig. 8. Reference [76] shows that the transi-
tion probabilities can be increased by increasing both the magnetic field amplitudes
and the detuning energies under the condition that the magnetic field amplitudes
remain smaller than the detuning energies. In this way, both high multiphoton Rabi
oscillation frequencies and small quantum computation times can be attained. This
makes both methods [1, 76] very robust against decoherence sources.

In order to perform the Grover algorithm, one needs the relative phases ’m

between the transition amplitudes S
ðnÞ
m;s, which is determined by 	m ¼

Pmþ1
k¼s�1 	kþ

’m, where 	m are the relative phases between the magnetic fields Hm(t). In this
way, it is possible to read-in and decode the desired phases 	m for each state jmi.
The read-out is performed by standard spectroscopy with pulsed ESR, where the
circularly polarized radiation can now be incoherent because only the absorption
intensity of only one pulse is needed. Figure 10 shows an example where the state
j7i is populated within the computational basis (excluding the ground state). Then,
we would observe only transitions from j7i to j8i at the frequency !¼!8,7 and
transitions from j7i to j6i at !¼!6,7, which uniquely identifies the populated level,
because the levels are not equidistant. This spectrum identifies all the populated
states unambiguously. Alternatively, one could measure the magnetization of the
sample with a high precision (see e.g. Ref. [77]). We emphasize that the entire
Grover algorithm (read-in, decoding, read-out) requires three subsequent pulses
each of duration T with d>T>!�1

0 >!�1
m >!�1

m;m � 1. This gives a ‘clock-speed’
of about 10 GHz for Mn12, that is, the entire process of read-in, decoding, and read-
out can be performed within about 10� 10 s.

The proposal for implementing Grover’s algorithm works not only for molec-
ular magnets but for any electron or nuclear spin system with non-equidistant
energy levels, as is shown in Ref. [76] for nuclear spins in GaAs semiconductors.
Instead of storing information in the phases of the eigenstates jmi [1], in Ref. [76]
the eigenenergies of jmi in the generalized rotating frame are used for encoding
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information. The decoding is performed by bringing the delocalized state
ð1=

ffiffiffi
n

p
Þ
P

m jmi into resonance with jmi in the generalized rotating frame. Al-
though such spin systems cannot be scaled to arbitrarily large spin s – the larger
a spin becomes, the faster it decoheres and the more classical its behavior will be –
we can use such spin systems of given s to great advantage in building dense and
highly efficient memory devices.

For a first test of the nonlinear response, one can irradiate the molecular magnet
with an a.c. field of frequency !s� 2,s=2, which gives rise to a two-photon absorp-
tion and thus to a Rabi oscillation between the states jsi and js� 2i. For stronger
magnetic fields it is in principle possible to generate superpositions of Rabi oscil-
lations between the states jsi and js� 1i, jsi and js� 2i, jsi and js� 3i, and so on
(see also Ref. [76]).
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